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Investigations are made of the wave motion which arises near resonance in a 
tube with an applied transverse magnetic field filled with a highly electrically 
conducting gas and closed by two rigid walls. The wave motion is driven by the 
sinusoidal radiative flux emitted by one of the walls as a consequence of its oscil- 
latory temperature; the other wall is taken to be a perfect reflector of thermal 
radiation. The effects of radiative transfer are treated by the use of the differential 
approximation. The analysis leads to the same formal governing integral equa- 
tion for the solution as arises in the ordinary gasdynamic case in the absence of 
electromagnetic effects. Within a narrow frequency band around resonance the 
theory predicts the occurrence of magnetogasdynamic shock waves which become 
dispersed as the thermal radiation is strengthened and may be totally dispersed 
to leave a continuous, periodic, but not necessarily sinusoidal, wave motion. 
The effect of the magnetic field is to delay the onset of dispersion. 

1. Introduction 
This paper is devoted to a study of the oscillations near resonance which 

arise in a perfectly electrically conducting inviscid gas confined within a closed 
tube with a transverse applied magnetic field. The disturbances are supposed to 
be generated by a small sinusoidal variation of the temperature of the rigid wall 
at one end of the tube, which thus emits a similarly varying radiative flux into 
the gas. The other end of the tube is closed by another rigid wall, which is a perfect 
reflector of thermal radiation. The wave motion which develops is thus dependent 
upon the interaction of effects of thermal radiation, in particular gas emission, 
with the magneto-acoustic phenomena which are stimulated by the temperature 
and pressure changes brought about by the absorption of the radiative 
energy. 

Resonant oscillations in gasdynamics have been studied for many years but 
the antecedents of the present work need only be traced back to the investiga- 
tions of Chester (1964). In  strictly linear acoustic theory of one-dimensional 
non-radiative wave motion in a closed tube a demand for infinite amplitude at 
resonance leads to a breakdown of the analysis there and dubious validity of the 
results near resonance. Experiment shows that, in a narrow frequency band 
around each resonant frequency, shock waves appear in the tube. Chester 
showed, by deductive reasoning, that the retention of certain nonlinearities in 
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the formulation for inviscid flow near resonance leads to a solution valid for all 
frequencies and that shock waves arise in a natural manner in this solution. 

Similar difficulties arise in the study of radiative acoustics. Long & Vincenti 
(1967) showed, on the basis of a linearized inviscid analysis, that at certain fre- 
quencies the amplitude of the oscillations becomes much greater than that else- 
where but remains finite as a consequence of the weak radiative damping present 
owing to the perturbations in the radiative emission from the gas. The validity 
of the theory is thus questionable near these frequencies. Subsequently Eninger 
& Vincenti (1973) applied the methods of Chester to the analysis of radiatively 
driven wave motion in a closed tube and again showed how, near resonance, the 
small perturbation assumption of a strictly linear theory is violated. They as- 
sumed a fairly large Boltzmann number ( ,., 400-IOOOOO), appropriate to experi- 
mental conditions, and showed that shock waves could arise in the tube, but that 
as the effects of thermal radiation became more significanti the shocks were dis- 
persed and for sufficiently strong effects would vanish leaving a continuous 
solution. 

In  the present investigation the problem studied by Eninger & Vincenti is 
extended to include electromagnetic effects when the gas in the tube has a high 
electrical conductivity. Whilst these authors employed the exponential approxi- 
mation to simplify the exact integro-differential expressions for the contribution 
from the thermal radiation, here an analysis is given of the problem using the 
differential approximation. In  order that the consequences of the two approaches 
may be compared the final results of an analysis using the exponential approxima- 
tion are also presented. I n  view of the already known close correspondence be- 
tween the two approximations, see, for instance, Vincenti & Kruger (1965), it is 
not surprising that these are formally very similar. The wave pattern in the tube 
depends upon the solution of a certain integral equation which in the case of the 
exponential approximation may be reduced by suitable transformations to 
become identical with that discussed by Eninger & Vincenti. The interaction 
between thermal radiation and magneto-acoustic waves in a tube at all conditions 
including those near resonance is thus similar to that in the absence of electro- 
magnetic effects. 

2. Basic equations 
Consider the unsteady one-dimensional flow of a grey gas of infinite electrical 

conductivity and absorption coefficient a* parallel to  the x* axis in a domain 
bounded by rigid planes at x* = 0 and x* = L, in the presence of an applied 
magnetic field H: parallel to the z* axis of a Cartesian system. The gas is taken 
to be calorifically perfect, inviscid and sufficiently hot for effects of thermal 
radiation to be significant. The wall at x* = 0 is supposed to radiate as a black 
body and to have a temperature TZ which oscillates sinusoidally about a mean 

(2.1) 
value TZ so that TZ = T,*(l+T,sinwt), 

with T, < 1. The wall at  x* = L is supposed to be a perfect reflector of thermal 
radiation. 
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The governing equations are those of magnetogasdynamics as given, for 
instance, by Cabannes (1970, chap, 1), suitably modified by the inclusion of a 
contribution from the radiative flux in the equation of energy conservation, 
together with appropriate equations to express the transfer of thermal radiation. 
The former of these may be written as 

p* = Rp*T* = p*~exp{(s*-s~)/c,}, (2.6) 

where u*,p*,p*, H*, T", q* ands* denote respectively the velocity, pressure, den- 
sity, magnetic field strength, temperature, radiative flux and specific entropy, s$ 
denotes a base level of entropy, y, c, and ,u are respectively the adiabatic index, 
specific heat at constant volume and permeability of the gas and t* is the time. 

It is well known that an exact statement of the equation of radiative transfer 
and its relationship to the radiative flux gives rise to a coupled system of integro- 
differential equations. Since these lead to intractable analysis various forms of 
approximation have been employed to simplify the formulation and to generate 
equations which are entirely differential. Here we employ the form known as the 
differential approximation, which has been shown to be particularly appropriate 
for use with one-dimensional problems, see for instance Vincenti & Kruger 
(1965, chap. 12). In terms of the forward and backward flux components, q:, 
in a gas of general opacity this may be written, see, for example, Helliwell(1966), 
as follows: 

q* = q? -q:, (2.7) 

a(q? -q:)px* = 4va*~*4--2~*(q~ +q:), (2.8) 

+ )/ax* = - 3 2a * (a*- -&), (2.9) 

where u* is the volumetric absorption coefficient and v is Stefan's constant. 
The boundary conditions are given by 

u* = 0 at x* = 0, L, (2.10) 

at  
at  

x* = 0, 

x* = L. 
(2.11) 
(2.12) 

Now introduce generally the suffix zero to indicate the mean state of the gas 
and express the general state in terms of perturbations about this mean state. 
Thus, since the frozen magnetic flux relationship that H* and p* are proportional 
is established from (2.2) and (2.3), we write 

H*/H$ = p*/pz. (2.13) 



76 J .  B. Helliwell 

Appropriate non-dimensional perturbation variables are defined as follows : 

} (2.14) 
p" =p,o*(i+p) ,  p* =p,o*( i+p) ,  T* = T,o*(i+T), U* = C ; U ,  

qr * - - gTZ4qF, s*-sb* = cvs, q* = aTz4q. 

Here c: is the mean magneto-acoustic speed in the gas, given by 

cz2 = a$= +pHt21pZ, (2.15) 

where at is the mean acoustic speed. Similarly, dimensionless position and time 
variables are introduced by defining 

x = x*w/co*, t = ot". (2.16) 

The substitution of these new variables into the governing equations (2.1)- 
(2.12) leads to a system of dimensionless equations which contains a number of 
parameters. These are most conveniently taken to be the following: 

p = (1 +,uH$2/p$a,*2)--J, the Alfvbn number, (2.17) 

B = ~ , p , o * c $ / a T $ ~ ,  the Boltzmann number, (2.18) 

D = a$c,*/w, the Bouguer number, (2.19) 

E = L o / c $ ,  the resonance number, (2.20) 

where cp is the specific heat at  constant pressure. As already remarked, in labora- 
tory conditions in which mechanical processes of energy transfer dominate those of 
radiation the Boltzmann number is large; thus as in the earlier work of Long & 
Vincenti (1967) and Eninger & Vincenti (1973) the further theory is developed on 
the assumption that l / B  < 1. 

Equations (2.2)-(2.9) are now expanded and terms up to and including those 
of second order in the perturbation variables are retained. From (2.6) the tem- 
perature and pressure perturbation may be expressed in terms of the entropy 
and density variations. Thus 

p = yp + s + *y(y  - 1) p2 + yps + is2, 
T = (y  - 1 ) ~  +S + +(y - 1) (y - 2)p2 + (7 - 1 ) ~ s  + is2. 

(2.21) 

(2.22) 

The remaining equations yield 

(2.23) 

(2.25) 
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It is sufficient for our purposes to retain a fully linearized form for the boundary 
conditions, which therefore for all t are such that 

q- = 4Twsint, u = 0 at  x = 0, 

Q- = q+, u = 0 at 2 = 1. 
(2.28) 

3. The simplified linear problem 
Consider first the linear problem, for which, since the Boltzmann number is 

large, it is adequate to neglect the contributions to (2.25) which arise from the 
termsin (2.26) relating to the perturbations in the gas emission. Equations (2.26) 
and (2.27) then separate from the remainder and together with the radiative 
boundary conditions (2.28) may be solved independently for q,. Whence using 
(2.25) to determine the entropy and substituting into (2.23) and (2.24), the fully 
linearized forms of the latter may be expressed as the pair of inhomogeneous wave 
equations 

1 (4 * &) (u * P )  = -7 2 + 34- (2 - 34) exp ( -  2 x 3-201) 48p2D2( 

Tw cost 

x {exp ( -  3iDx) - exp [ - 3+D(2Z-x)]}. (3.1) 

These may be solved without undue difficulty. A complementary function 
which satisfies the condition u = 0 at x = 0 may be written as 

u i - p  = & 2 f ( t T X ) .  (3.2) 

A particular integral satisfying the same condition is derived and finally the 
form of the functionfis obtained by fitting the complete solution to  the remaining 
boundary condition (2.28). One finds the final solution 

1 -exp ( -  2 x 34DZ) 
tan 1 

TI, 
2 + 34- (2 - 3t) exp ( -  2 x 3401) 

u + p  = 

x COB (t T 2) +exp ( - 34Dx) ( 

+ exp [ - 3+D(21- x)] ( i- 3*0 cos t + sin t) 

+ [l -exp (-2 x 3tDZ)lsin ( t ~  x) , 

340 cost-sin t )  

I (3.3) 

in which the first term in braces is the complementary function and the remaining 
three terms compose the particular integral. 

Whilst the linear theory and solution are valid in most circumstances, exactly 
at resonance the amplitude of the complementary function increases without 
bound as tan 1 falls to zero, but the particular integral remains finite throughout. 
The difficulty arises when anodein the complementary function for u, at rosonance, 
coincides with the position of the reflecting wall. Under these circumstances no 
finite amplitude could suffice to adjust the complementary function to fit, in 
conjunction with the particular integral, the boundary condition at  this wall. Thus 
the linear small perturbation theory must become invalid near resonance, when 
1 z Nn, where N is an integer; nonlinear terms are significant and must be taken 
into consideration. 
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4. A uniformly valid approximation near resonance 
Since near resonance it is essential to include at least some of the effects of non- 

linearity, by implication it is likewise necessary to take into account the perturba- 
tions in emission from the gas. On the basis of a simplified linear theory it has 
been seen that the amplitude of the complementary function is much larger than 
that of the particular integral. Now a possible approach to the nonlinear problem 
is to seek an iterative solution as Chester (1964) did in his study of a related prob- 
lem. He showed how the failure of the approximate solution could be avoided 
by delaying application of the boundary condition at the reflecting wall until 
one has derived the first iterated solution, which in view of the above remark 
may be obtained by iterating upon the complementary function of the simpli- 
fied linear theory alone. The approximate solution so obtained is thus uniformly 
valid whether or not the tube is near resonance. Before, however, embarking 
upon the further analysis it is necessary to examine which of the terms previously 
omitted from (2.23)-(2.27) should be retained as significant. 

The radiation from the black wall which drives the oscillations enters the solu- 
tionvia the boundary conditions on g, applied to (2.26) and (2.27) and ultimately 
gives rise to the particular integral. Clearly, then, to leading order qf have the 
same order as these driving perturbations and by way of (2.25) so does the en- 
tropy variation s. On the other hand the velocity u and density p contain terms 
from both the complementary function and the particular integral. Thus since 
near resonance the former dominates the latter it follows that the magnitudes of 
u and p are much larger than those of s and g* although all remain small. Hence 
whilst ik is necessary to retain second-order terms in u and p it is sufficient to omit 
all but linear terms in s and q*. Furthermore since B is large it is adequate to reject 
all but linear terms in (2.26) and of these to neglect the term in s compared with 
that in p. 

Therefore the appropriate nonlinear equations containing terms of leading 
order are 

ap au au ap 
at ax ax ax' --P--U- -+- = 

a(g- - s + ) ~ x  + 2 ~ -  + s+) = ~ S O ( Y  - 1 )  P, 

a(% + q+)/aX + 3 m -  - !I+) = 0, 

(4-4) 

(4.5) 

subject to the boundary conditions (2.28). 
Consider the last two equations (4.4) and (4.5). Iterating upon the comple- 

mentary function (3.2) of the simplified linear theory, satisfying u(0, t )  = 0, the 
insertion of the form 

p =f ( t -x )+ f ( t+x)  
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into the right-hand side of (4.4) leads to a pair of equations for q*, the solution 
of which depends upon both the radiative boundary conditions (2.28) and the, 
meantime, arbitrary function f,  On solving these equations one finds the form for 
the radiative flux 

[ [exp ( - 34Dx) 
16 '--'+ = 2 +36- ( 2 - 3 6 )  exp (- 2 x 34D1) 

- exp { - 3*D(2Z- x)}] Tw sin t - 2(y - 1) D exp ( - 34DZ) 134 cosh (3*Dx) 

+ 2 sinh (34Dx)) 1: cosh [34D(Z - q)] { f ( t  - 7) +f(t  + q)} dq] 

+ 16(y- 1) D r c o s h  [34D(x- q)]{f(t-q) +f(t +q))dq.  (4.6) 
0 

The entropy perturbation is derived by substitution from (4.6) into (4.3) and 
is then inserted into (4.2). Also the forms for u and p obtained from (3.2) are sub- 
stituted into the right-hand sides of (4.1) and ( 4 . 2 ) ,  following which suitable com- 
bination and rearrangement leads to the pair of inhomogeneous wave equations 

a a  - 48/32D2 
B[2 + 34 - ( 2  - 36) exp ( - 2 x 3*DZ)] 

x {exp ( - 39Dx) - exp [ - 3*D(21 - x)]) T, cos t 
l6(7 - I) P2D - (f(t -x) - f ( t  +x) + 3D2exp [ - 38D(Z-x)] 

2 +36-(2- 33) exp ( -  2 x 34Dx) 
2 +  36- ( 2 -  36)exp( - 2 x 3401) 

X 

- 3D2sz cosh [3*D(x - q)] {j(t - q) + A t  + r)}  dy]  
0 

+ { k [f'(t i x) {3f(t T x) - f ( t  * x,} +f"t f x) {f(t  - x) 

+f(t + 4>1+ (Y - 2) P2"f(t - 4 + f ( t  +%)I rf'(t - 4 -f'(t + x)l>, 
(4.7) 

where a prime denotes the derivative of a function with respect to its argument 
and 

At k q) = f ( t  * r )  dt. (4-8) S 
The terms on the right-hand side, in order, correspond respectively to the basic 
driving radiation from the black wall as in the simplified linear theory, see (3.1), 
the effects of perturbations in the gas emission and contributions from nonlinear 
magnetogasdynamic effects. 

The solution of (4.7) is now required subject to the boundary conditions (2.28) 
upon the velocity. The form of the complementary function satisfying 21 = 0 
at x = 0 is identical with that of the simplified linear theory and is expressed in 
(3.2). The various contributions to the particular integral from the above three 
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components are derived in B straightforward manner but after protracted algebra. 
We consider them in turn. 

The effects of the driving radiation are determined as in the simplified linear 
theory. As there, one seeks a particular integral of the form 

urtrp = exp ( -  33Dx)F,(t) +exp{- 3 8 0 ( 2 1 - ~ ) ) a , ( t )  +H, ( t  T x) (4.9) 

with the last term chosen so that the full expression satisfies the boundary 
condition u(0, t )  = 0. One finds the expression given by the appropriate part of 
( 3 . 3 ) .  

In  deriving the contribution from the gas emission we follow the earlier analysis 
of Eninger & Vincenti. On expanding the hyperbolic functions in the relevant 
terms on the right-hand side of (4.7) into exponential functions one notes that a 
suitable expression for the particular integral may be written, formally, as 

u + p  = F,(tTx)+xJ*(tFx)+K*(t-t-x) 

+ {exp [ - 3+D(x-7)]  [G,(t -7)  + G,(t + q ) ]  +exp[ - 3*D(21 -x + 7 ) ]  s:: 
x P* (t - r )  + 0, (t 4- r)I) d r  

x [1*@-7) +1*(t+r)l)d7. (4.10) 

The first term is included in order that the form may satisfy the condition 
u(0, t )  = 0; the second and third terms arise since, for an arbitrary function f, 

(ap t  rf: a / w  {f(t f x)> = 2f’U -I 4, (4.11) 

(apt  rf: apx)  {xf(t T x)) = & f ( t  T x). (4.12) 

Substitution from (4.10) into (4.7) and identification of corresponding terms 
then yields the required forms for the several arbitrary functions in (4.10). 

The particular integral corresponding to nonlinear magnetogasdynamic 
effects arises from the last terms in braces in (4.7) and is obtained directly by 
using the identities 

(apt * apx) { f xf’(t T x)f(t T x)) = f’( t  T x ) f ( t  T- z), (4.13) 

(ap t  rf: apx) {f’(t F .)At f x,> = 2f’(t T x)f(t f x), (4.14) 

(ap t  k apx) {f(t - x)f(t + x)} = 2f’(t k x)f(t T x), (4.15) 

(apt  rf: 8/83?) {f“t rf: z)> = 4f’(t 9 z)f(t rf: x). (4.16) 

Without modification the form derived satisfies the boundary condition on u 
at x = 0. 
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Hence by adding the complementary function to these three contributions 
to the particular integral, the general solution to (4.7) satisfying u = 0 at x = 0 
is obtained. This may be written as 

x ([ 1 - exp ( - 2 x 330Z)] sin (t T x) + exp ( - 3 4 0 ~ )  ( k 360 cost - sin t )  

24p2(y - 1) D3 
B 

+ oxp [ - 360( 21 - x)] ( f 3%D GOS t + sin t)} - 

1 

- A J  2 [l +exp{-2 x 34D(Z-y))] { c o s h 3 ~ 0 ~ + c o s h 3 ~ 0 ( ~ - 2 q ) }  

1 
f- [2xf(tT x) T]( t  f x) T m  41) +([3 + (y- 2)/32]xf)(tT x ) f ( t i  x) 

& +[l - (y -  2)p2] u(t -x)f(t +x) + 4f2(t k x) -f'(t T x)f((t k x)]}. (4.17) 

The arbitrary function f in this solution is determined by application of the 
remaining boundary condition u(Z, t )  = 0 from the set (2.28). Now we are inter- 
ested in the behaviour of the solution near resonance, for which ]A1 < 1, where 
A = l-Nrr and N is an integer. Since the driving radiation from the wall is 
periodic with period 27r in t, the solution is also periodic, so that 

f(t + I - A) = f ( t  - I + A). (4.18) 

Expanding these to first order in A and using the fact that, to  the same order, 

A = t anh  = tan(1-Nn) = tanl, (4.19) 
F L M  6 
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we may write 
f ( t  + I )  = f(t- I )  + 2 tan If’(t - I). (4.20) 

Similar forms may be obtained for f’(t+Z) and f(t+Z). Thus by inserting this 
approximation into (4.17) after application of the boundary condition and 
setting T = t - I ,  one finds that $(7) must satisfy the equation 

0 = - 2 tanlf’(7) + ( 3  + ( y  - 2 ) p a ) l f ( ~ ) f ’ ( 7 )  

48p2D2( 1 - exp( - 2 x 34DZ)) T, 
+ ~ ( i  + 302) (2 + 34- (2- 3+)exp (- 2 x 3t01)} 

[ j y j v  2 + 34- (2 - 3t) exp [ - 2 x 34DN771 

12P2(y - 1) 0 3  

B sin T - 

1 +exp [ - 2 x 340(N7r- v)] 

x { [ Z  + 34 - ( 2  - 3.t) exp ( - 2 x 34Dv)l [cosh 34D(h - 2v) + cosh 3tDh] 

+ [ 2  + 3* + (2 - 33) exp ( - 2 x 3 t D v ) l  [sinh 34D(A - ZV) - sinh 3*Dh]) 

x (f( T - A )  - f( 7 + A)}  dh dv - 2 A h 1  cosh 34D(N27 - v) 
N7l 

4N77 
x (f( 7 + N7T - v) - f(7 + N7T + v)} dv+ - (4.21) 

A more convenient form of this equation is obtained if the hyperbolic functions 
in the double integral are written in terms of exponential functions and the entire 
equation integrated with respect to T .  Hence, so doing, and introducing the 
supplementary notation 

1 92p2D2T,,> 1-exp(-2x340Z) 
(3 + (y - 2)p2)1B(1 + 3D2) 2 + 34- (2 - 34) exp ( - 2 x 3401) € =  

6 = 1Z(y - 1) 0p2/(3 + (7 - 2) p2) ZBB~~, 

Y = 7~ tan Z/{3 + (y - 2) p2} ZeJ, 

= 2 x 3+/{2+ 36- (2- 33)exp (- 2 x 3301)), 

p (  7) = f<T)/e4, 

it follows that F(T)  must satisfy the nonlinear integral equation 

c + * cos 7 = {F(r )  - 2r/n}2 

(4 .23)  

( 4 . 2 4 )  

(4.25) 

(4.26) 

F(r )  dr - 2N7rD2 S N n / ‘  cosh [340(Nn - v)] 

+ exp [ - 34D( 2v - A)] + exp [ - 34D( 2N77 - 2v +A)]} 

x (~(7-A)-P(7+h)}d7dhdv . (4 .27)  

The value of constant C is determined by using the fact that since P(T) is periodic 
its mean value over a period is zero. 

1 
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It is worthy of note that an analysis of the same problem using the exponential 
approximation to the exact equation of radiative transfer leads to the same 
fundamental integral equation governing the flow pattern. With the exponential 
integral E2(5) in the exact formulation replaced by m exp (-nfS) the various 
parameters in (4.27) are then defined by 

32rnnp2D2T, 
€ =  (1 - exp ( - 2nDZ)}, 

(3 + (7 - 2 )  b2> ZB( 1 + n2D2) 
(4.22 a) 

6 = 4mn2(y - 1) Dp2/(3 + (7 - 2) /3’} lBd ,  (4.23 a) 

r = n- tan Z/(3 + ( y  - 2) ,!P} k4, (4.24 a) 

a =  1. (4.25 a) 

Clearly the parameters are little different from those in the case using the dif- 
ferential approximation provided that one takes m = 1 and n = 34. 

Now (4.27) with !2 = 1 is in all respects identical with that derived by Eninger 
& Vincenti, which governs the corresponding problem in the absence of electro- 
magnetic effects. In  the present work these effects are accounted for by the pre- 
sence of the parameter /3 in the definitions (4.22a)-(4.24a) for the constants B, 
S and r. Thus the general behaviour of oscillations near resonance in radiative 
magnetogasdynamics is similar to that in radiative gasdynamics. However, 
since the analysis of the integral equation is presented in the paper by Eninger 
& Vincenti it is not repeated here and the reader is referred to their report for 
the details. 

5. Conclusions 
The significance of the function F is brought out more clearly if one considers 

the pressure perturbation in the gas n e a  resonance, noting at the same time that, 
to leading order, from (2.13) and (2.21) the perturbations of the density and 
magnetic field are proportional to it. The basic expression is obtained by combin- 
ing (2.21) and (2.24), taking terms of leading order and substituting for u from 
the solution (4.17). One finds that, after some algebra and providing D is not a 
small fraction, the pressure perturbation is given by 

p N Y E ~ { F ( ~ - x ) + P ( ~ + x ) } ,  (5.1) 

and in particular on the reflecting wall 

First we examine the consequences of the particular choice of radiative ap- 
proximation, be it differential or exponential. The effects are apparently only 
in the forms of the parameters as given by (4.22)-(4.25) and (4.22a)-(4.25a). 
One finds, after choosing m = 1 and n = 3h, that 

Ce -=2={;} 2 =(M = ( 2  + 36) - (2- 3k)exp ( -  2 x 36DZ) 

where the subscripts e and d stand for ‘exponential’ and ‘differential’ respec- 
tively. This ratio varies monotonically with increase of the essentially positive 

, (5.3) 
€d ‘ d  2 x  34 

6-2 
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parameter Dl from unity to an upper bound of (2 + 33)/2 x 34 = 1.08. Thus the 
difference between the two approximations is quite trivial and the predicted 
flow patterns are virtually unaffected by the particular choice of approximation 
used. 

The essential features of the response near resonance depend upon the values 
of the two parameters 6and r ,  which are such that 

(5 .5 )  

where the subscripts rn and g stand for ‘magnetogasdynamic’ and ‘gasdynamic‘ 
respectively. Since for real gases 1 < y < 2 and p2 is fractional the ratio (y + 1)/  
(3 - (2 - y )  ,PI is always positive and less than unity. Precisely at resonance 
( r  = 0 )  the dominant effect of increasing 6 is to diminish the shock strength and 
this rapidly. Now since, all other quantities being unchanged, 6 N 1/B we note 
that 6 increases as the general level of radiative transfer within the gas increases. 
Hence in the magnetogasdynamic case to attain the same value of 6 as in the 
gasdynamic case the general level of radiation must be greater. Thus the effect 
of the magnetic interaction is to diminish the effects of radiative transfer. 

Further, for situations near resonance Eninger & Vincenti’s calculations show 
that, for specified D, with given r a value of 6 is reached at  which the discontinuity 
disappears, so that the shock is fully dispersed, and that as r increases the value 
of this critical adecreases, but more slowly. Thus, noting from (5.4) and (5.5) that 
for fixed ,!3 the difference between rg and rm is proportionally greater than the 
corresponding change in 6, it follows that a greater level of radiation is required in 
the magnetogasdynamic case before the shock is fully dispersed. 
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